Event-Driven Simulation of Spiking Neurons with Stochastic Dynamics
نویسندگان
چکیده
We present a new technique, based on a proposed event-based strategy (Mattia & Del Giudice, 2000), for efficiently simulating large networks of simple model neurons. The strategy was based on the fact that interactions among neurons occur by means of events that are well localized in time (the action potentials) and relatively rare. In the interval between two of these events, the state variables associated with a model neuron or a synapse evolved deterministically and in a predictable way. Here, we extend the event-driven simulation strategy to the case in which the dynamics of the state variables in the inter-event intervals are stochastic. This extension captures both the situation in which the simulated neurons are inherently noisy and the case in which they are embedded in a very large network and receive a huge number of random synaptic inputs. We show how to effectively include the impact of large background populations into neuronal dynamics by means of the numerical evaluation of the statistical properties of single-model neurons under random current injection. The new simulation strategy allows the study of networks of interacting neurons with an arbitrary number of external afferents and inherent stochastic dynamics.
منابع مشابه
Efficient Event-Driven Simulation of Large Networks of Spiking Neurons and Dynamical Synapses
A simulation procedure is described for making feasible large-scale simulations of recurrent neural networks of spiking neurons and plastic synapses. The procedure is applicable if the dynamic variables of both neurons and synapses evolve deterministically between any two successive spikes. Spikes introduce jumps in these variables, and since spike trains are typically noisy, spikes introduce s...
متن کاملAn event-driven framework for the simulation of networks of spiking neurons
We propose an event-driven framework dedicated to the design and the simulation of networks of spiking neurons. It consists of an abstract model of spiking neurons and an efficient event-driven simulation engine so as to achieve good performance in the simulation phase while maintaining a high level of flexibility and programmability in the modelling phase. Our model of neurons encompasses a la...
متن کاملNEVESIM: event-driven neural simulation framework with a Python interface
NEVESIM is a software package for event-driven simulation of networks of spiking neurons with a fast simulation core in C++, and a scripting user interface in the Python programming language. It supports simulation of heterogeneous networks with different types of neurons and synapses, and can be easily extended by the user with new neuron and synapse types. To enable heterogeneous networks and...
متن کاملEvent-Driven Simulation Scheme for Spiking Neural Networks Using Lookup Tables to Characterize Neuronal Dynamics
Nearly all neuronal information processing and interneuronal communication in the brain involves action potentials, or spikes, which drive the short-term synaptic dynamics of neurons, but also their long-term dynamics, via synaptic plasticity. In many brain structures, action potential activity is considered to be sparse. This sparseness of activity has been exploited to reduce the computationa...
متن کاملEvent-Driven Simulations of Nonlinear Integrate-and-Fire Neurons
Event-driven strategies have been used to simulate spiking neural networks exactly. Previous work is limited to linear integrate-and-fire neurons. In this note, we extend event-driven schemes to a class of nonlinear integrate-and-fire models. Results are presented for the quadratic integrate-and-fire model with instantaneous or exponential synaptic currents. Extensions to conductance-based curr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural computation
دوره 15 4 شماره
صفحات -
تاریخ انتشار 2003